5 research outputs found

    Human-Machine Teamwork: An Exploration of Multi-Agent Systems, Team Cognition, and Collective Intelligence

    Get PDF
    One of the major ways through which humans overcome complex challenges is teamwork. When humans share knowledge and information, and cooperate and coordinate towards shared goals, they overcome their individual limitations and achieve better solutions to difficult problems. The rise of artificial intelligence provides a unique opportunity to study teamwork between humans and machines, and potentially discover insights about cognition and collaboration that can set the foundation for a world where humans work with, as opposed to against, artificial intelligence to solve problems that neither human or artificial intelligence can solve on its own. To better understand human-machine teamwork, it’s important to understand human-human teamwork (humans working together) and multi-agent systems (how artificial intelligence interacts as an agent that’s part of a group) to identify the characteristics that make humans and machines good teammates. This perspective lets us approach human-machine teamwork from the perspective of the human as well as the perspective of the machine. Thus, to reach a more accurate understanding of how humans and machines can work together, we examine human-machine teamwork through a series of studies. In this dissertation, we conducted 4 studies and developed 2 theoretical models: First, we focused on human-machine cooperation. We paired human participants with reinforcement learning agents to play two game theory scenarios where individual interests and collective interests are in conflict to easily detect cooperation. We show that different reinforcement models exhibit different levels of cooperation, and that humans are more likely to cooperate if they believe they are playing with another human as opposed to a machine. Second, we focused on human-machine coordination. We once again paired humans with machines to create a human-machine team to make them play a game theory scenario that emphasizes convergence towards a mutually beneficial outcome. We also analyzed survey responses from the participants to highlight how many of the principles of human-human teamwork can still occur in human-machine teams even though communication is not possible. Third, we reviewed the collective intelligence literature and the prediction markets literature to develop a model for a prediction market that enables humans and machines to work together to improve predictions. The model supports artificial intelligence operating as a peer in the prediction market as well as a complementary aggregator. Fourth, we reviewed the team cognition and collective intelligence literature to develop a model for teamwork that integrates team cognition, collective intelligence, and artificial intelligence. The model provides a new foundation to think about teamwork beyond the forecasting domain. Next, we used a simulation of emergency response management to test the different teamwork aspects of a variety of human-machine teams compared to human-human and machine-machine teams. Lastly, we ran another study that used a prediction market to examine the impact that having AI operate as a participant rather than an aggregator has on the predictive capacity of the prediction market. Our research will help identify which principles of human teamwork are applicable to human-machine teamwork, the role artificial intelligence can play in enhancing collective intelligence, and the effectiveness of human-machine teamwork compared to single artificial intelligence. In the process, we expect to produce a substantial amount of empirical results that can lay the groundwork for future research of human-machine teamwork

    Understanding Human-AI Cooperation Through Game-Theory and Reinforcement Learning Models

    Get PDF
    For years, researchers have demonstrated the viability and applicability of game theory principles to the field of artificial intelligence. Furthermore, game theory has been shown as a useful tool for researching human-machine interaction, specifically their cooperation, by creating an environment where cooperation can initially form before reaching a continuous and stable presence in a human-machine system. Additionally, recent developments in reinforcement learning artificial intelligence have led to artificial agents cooperating more efficiently with humans, especially in more complex environments. This research conducts an empirical study to understand how different modern reinforcement learning algorithms and game theory scenarios could create different cooperation levels in human-machine teams. Three different reinforcement learning algorithms (Vanilla Policy Gradient, Proximal Policy Optimization, and Deep Q-Network) and two different game theory scenarios (Hawk Dove and Prisoners dilemma) were examined in a large-scale experiment. The results indicated that different reinforcement learning models interact differently with humans with Deep-Q engendering higher cooperation levels. The Hawk Dove game theory scenario elicited significantly higher levels of cooperation in the human-artificial intelligence system. A multiple regression using these two independent variables also found a significant ability to predict cooperation in the human-artificial intelligence systems. The results highlight the importance of social and task framing in human-artificial intelligence systems and noted the importance of choosing reinforcement learning models

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Changes in surgicaL behaviOrs dUring the CoviD-19 pandemic. The SICE CLOUD19 Study

    Get PDF
    BACKGROUND: The spread of the SARS-CoV2 virus, which causes COVID-19 disease, profoundly impacted the surgical community. Recommendations have been published to manage patients needing surgery during the COVID-19 pandemic. This survey, under the aegis of the Italian Society of Endoscopic Surgery, aims to analyze how Italian surgeons have changed their practice during the pandemic.METHODS: The authors designed an online survey that was circulated for completion to the Italian departments of general surgery registered in the Italian Ministry of Health database in December 2020. Questions were divided into three sections: hospital organization, screening policies, and safety profile of the surgical operation. The investigation periods were divided into the Italian pandemic phases I (March-May 2020), II (June-September 2020), and III (October-December 2020).RESULTS: Of 447 invited departments, 226 answered the survey. Most hospitals were treating both COVID-19-positive and -negative patients. The reduction in effective beds dedicated to surgical activity was significant, affecting 59% of the responding units. 12.4% of the respondents in phase I, 2.6% in phase II, and 7.7% in phase III reported that their surgical unit had been closed. 51.4%, 23.5%, and 47.8% of the respondents had at least one colleague reassigned to non-surgical COVID-19 activities during the three phases. There has been a reduction in elective (>200 procedures: 2.1%, 20.6% and 9.9% in the three phases, respectively) and emergency (<20 procedures: 43.3%, 27.1%, 36.5% in the three phases, respectively) surgical activity. The use of laparoscopy also had a setback in phase I (25.8% performed less than 20% of elective procedures through laparoscopy). 60.6% of the respondents used a smoke evacuation device during laparoscopy in phase I, 61.6% in phase II, and 64.2% in phase III. Almost all responders (82.8% vs. 93.2% vs. 92.7%) in each analyzed period did not modify or reduce the use of high-energy devices.CONCLUSION: This survey offers three faithful snapshots of how the surgical community has reacted to the COVID-19 pandemic during its three phases. The significant reduction in surgical activity indicates that better health policies and more evidence-based guidelines are needed to make up for lost time and surgery not performed during the pandemic

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    No full text
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore